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Introduction

With an electrohydrodynamic (EHD) generator1, one can
switch from the periodical voltage excitation to 
intermittent pulse voltage stimulation. In this ca
isolated drops are produced. This technique used to
erate drops on demand is interesting for ink jet printi
It can as well be applied for other purposes. For insta
Hrdina and Crowley use this technique to sort biolo
cal cells2. In their paper, they present a theoretical lin
growth model which predicts the number of drops p
duced versus pulse width. But the model does not 
any detail on the satellite droplets formation proce
Moreover, they do not compare their predictions w
experimental measurements.

Following a previous study on EHD stimulation3,
this paper reports on two theoretical models of gen
tion of isolated drops and corresponding experime
characteristic of ink-jet applications. Experimental m
surements are performed with a scaled-up prototyp
,
n-
.
e,

i-
r
-
e

s.

a-
ts
-
of

an ink jet printer3. In order to validate the models, print
features such as the breakup length, the number and
ume of drops and satellites produced are measured

Our models, linear and non-linear, are both ba
on the Lee’s equations4. The two models take into ac
count a more realistic distribution of the electrosta
field than the one used by Hrdina and Crowley2. The
linear model gives rather accurate estimates of the v
tions of the breakup time. The non-linear model, wh
requires longer computing times, gives a good desc
tion of the drop and satellite formation.

Linear Theoretical Model

We consider a jet of conducting liquid of radius a, exit-
ing from the nozzle with a uniform velocity Uo, and pass-
ing through an electrodewhich is assumed to induce a
axisymmetric field in the vicinity of the cylindrical je
interface (see Figure 1). An intermittent applied volta
of rather short duration induces a deformation of the
on a section of spatially limited extension. This pert
bation is further amplified by the capillary instabili
mechanism4, and finally leads to the formation of is
lated drops.
Chapter 2—Continuous Ink Jet —75
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This problem is examined here along the lines o
previous study of multi-electrode EHD continuous stim
lation3. Since the electric field has only a limited ax
extension, the process can be divided into two suc
sive stages: a first one where the jet is subjected to
action of the electrostatic pressure, and a second s
where only the capillary forces are effective. The jet e
lution can be described by the long wave cylindrical
model proposed by Lee4 and previously used in EHD
stimulation problems2, 3. In their previous study of inter
mittent stimulation, Hrdina and Crowley2 retained a rect
angular distribution of the electric field E along the axial
direction. As in [3] , we consider here a more realis
smooth bell-shaped axial distribution for E.

Figure 1. Schematic Representation of Isolated Drops F
mation Process

Mathematical Formulation
Linearizing Lee’s equations4 relative to an inviscid

liquid, we obtain the following equation governing t
surface displacement δ supposed to be very small:
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where T is the surface tension, ρ the mass density and pe

the electrostatic pressure. Introducing as reference s
the initial jet radius a for space variables and radius p
turbation, tr = (ρa3/T)1/2 for the time and peo for the elec-
trostatic pressure, we obtain the following equation
lating the dimensionless variables:
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with:

β = Uo (ρa/T)1/2, S = peo a/T (3)

β is the ratio of jet and capillary velocities, (β2 is the
Weber number), and S compares the electrostatic p
sure to the capillary pressure.

The electrostatic pressure in (1) results from the
tion of the electric field E(x,t) on the jet surface. Thi
field can be expressed as:

E(x,t) = Eo f(t) g(x) (4)

where Eo is the extremum field value, g(x) represents
the field variation along the axial direction (ma
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g x( ) = 1) and f(t) represents the time variation of the
applied voltage. In the following, we consider only the c
of rectangular pulses such that f(t)=1 for 0 <t  < to and 0
elsewhere. The electrostatic pressure can be writte

pe(x,t) = -peo G(x) for 0 <t  < to (5)

pe(x,t) = 0 for t<0 or  t >0

with peo = 1/2 εo Eo
2 and  G(x)= g(x)2. The governing equa

tion is then:
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The initial conditions are such that at t=0

δ ∂δ
∂

∂δ
∂

= = =
t x

0 (7)

Typically for ink-jet applications, Weber numbe
are of order O(102)3, so it is convenient to work with th
coordinates (z, τ) translating with the mean velocity o
the jet. The relations between both sets of coordin
are:
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Equation (6) then becomes:
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Jet Dynamics
During the EHD stimulation stage (0<τ<τo), the de-

formation is very weak and in (9), the electrostatic pr
sure term fully dominates the capillary term which c
be neglected. Equation (9) can then be integrated w
out knowing explicitly the function G(x) for τ between
0 and τo (duration of voltage pulse):
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For τ>τo,, equation (9) reduces to the linear simp
fied equation for temporal instability which has simp
solutions only for axially periodic deformations. Th
shape of δ(z,τo) will change for τ>τo, and the way to ob
tain solutions is to introduce Fourier transforms (deno
by the symbol (∧)), to solve (9) for every wave numb
and to superpose the contributions of all amplified mo
(0<k<1). After some lengthy but elementary calcu
tions, we deduce the following approximate express
valid for long enough times:
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where k=2π/λ is the wave number, γ k k k= −( )[ ]1 22 1 2
/

/

is the temporal growth rate and d G du
^

 is the Fourier
transform of the derivative dG du . This relation which
does not require precise knowledge of the functionG
(x) , has the advantage of giving qualitative trends
practice due to the exponential term exp γ τ τk −( )[ ]0  in
the integral, the behaviour will be controlled by a rat
narrow band of wave numbers around kopt corresponding
to the maximum of γk. The factor 1 0− ( )exp ikβτ  has a
maximum norm for koptβτ π0 ≈ , (modulo 2π). These
jet displacement maxima correspond to minimum v
ues of break-off length. For koptβτ π0 2≈  conversely,
this factor is close to zero, and Tb and Lb clearly take
larger values as one can note on Figure 2.

Figure 2. Dimensionless break-off time Tb versus dimension-
less length of stimulated jet Lp

Breakoff Time and Drop Volume
The break-up length Lb and/or break-up time Tb can

be estimated from linear theory by prescribing the p
turbation amplitude to be equal to the cylindrical jet 
dius. The precise determination requires the knowle
of the function G(x). An approximate bell-like shape fo
the axial variation g(x) of the electric field on the cylin
drical jet interface involves only simple mathemati
developments:
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and the break-off time Tb is the root of the equation:
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The results obtained by numerically solving (14) 
plotted on Figure 2. We clearly see that the two max
n

r

l-

r-
-

ge

l

e
a

are at the abscissae ≈ 9 and ≈ 18 respectively which cor
respond to the wave number  of perturbation with 
maximum growth rate. During the voltage pulse, the
displacement is 9a, i.e. the wave length λopt of this per-
turbation with the maximum growth rate. The mark
minimum is at the abscissa 4.5 which corresponds to λopt/
2. Due to a “damping” effect of the modulation of Tb,
the second minimum and maximum are at the absci
about 12.5 and 17 slightly lower than (3/2)λopt and 2λopt

respectively.
The volume of isolated drops, can be estimated fr

the shape of the deformation, by assuming that the
uid volume between two minima of δ(z, τ=Tb) is equal
to that of the same section of the initial cylindrical j
The results plotted in Figure 3 show that the drop v
ume tends to increase when the voltage pulse durati
increased up to a point where the central drop splits 
two drops.

Non Linear Approach

As generally observed in the problem of stimulat
jets3,5,6, the linear approach leads to good estimates
the break-up length Lb, since the initial perturbations ar
small, i.e the linear theory is relevant. The volume
drops is only approximatively estimated by linear the
which by no means can predict the shape of the defor
jet at the break-up time.

Thus a non linear approach is required. To solve
merically the problem, we adopt a non linear appro
based on one dimensional models which can be vie
as long-wave approximations of the Navier-Stokes eq
tions. In the case of the temporal instability problem,
expanding the different variables into Fourier ax
modes (truncated at some value N), the partial differ
tial Lee equations4 are converted into a set of non line
ordinary differential equations which can be easily solv
numerically, and give the temporal evolution of the va
ous Fourier modes7.  This approach has been adapted
the case of intermittent stimulation. In practice, the re
angular pulse voltage duration τ0 is assumed to repea
with period Tr (Tr >>τo). The stimulation stage is treate
as in the linear approache and the deformation  is g
by (9) at time retaining the same field distribution sha
g(x) as given by (12).  Then this deformation is expand
into Fourier spatial modes, giving the initial conditio
for integrating the non linear equations of time evo
tion of the various Fourier modes (up to 50 modes h
been retained). Integration is stopped when the jet
dius takes the value a = 0 at some location. The shape 
the deformed jet is obtained by the temporal to spa
temporal transformation applied in the case of high W
ber number flow8.

The results on break-up time (Figure 2.) confirm t
argument detailed at the beginning of this section: 
variations of Tb are very similar to those given by th
linear theory. The non linear approach is expected to
count for the non linear process valid in particular 
large deformations before break-up. Therefore, the 
linear solution should give accurate predictions on 
jet shape up to the time of first break-up. Some jet p
Chapter 2—Continuous Ink Jet —77
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files are given in Figure 4 and we shall see in §IV t
they compare favourably with experimental observatio
The predictions of drop volumes would be limited 
accuracy, because the integration is stopped at t = Tb,
and it is necessary to extrapolate the long time behav
of the strongly deformed part of the jet.

Experimental Results

Experimental Arrangement
A jet of 0.44 mm in diameter exits from a 12 m

long hypodermic needle of inner diameter φ = 0.45 mm.
The needle is grounded. The jet velocity Uo which can
be as high as 10 m/s is controlled by a pressure r
lated tank containing the fluid. The stimulation electro
consists of a stainless steel plate with a thickness o
mm. The electrode has a small hole with a diamete
0.8 mm and the jet passes along the axis. The elec
is connected to a voltage supply with which peak am
tudes as high as 1.75 kV can be attained. A voltage p
is generated by a micro-computer which also cont
voltage period (Tr) and pulse width (τo). The latter can
be varied between 0 and 1000 µs with a minimum step
of 10 µs. The digital signal is converted to an analo
one to drive the High Voltage Amplifier.

The jet break-up is studied using a shadow techn
described elsewhere.3  The working fluid is a glycerine
water mixture (65% glycerine) with viscosity η = 17 cps,
surface tension T = 57⋅10-3 N/m and mass density ρ =
1168 kg/m3 at room temperature. By adding a dye, 
conductivity σ of the mixture is increased to 1.6 10-3 S/
cm. Experiments are performed with a pulse voltag
1.75 kV peak amplitude and 2816 µs period (Tr). Breakoff
length, volume of drops, and jet shape at breakoff
measured versus pulse width.

Breakoff Time Predictions and Measurements
To compare experiments to predictions, the dimens

less break-off time (Tb) is plotted versus dimensionle
length of jet stimulated (Lp) in Figure 2. The dimensionles
scales are calculated as following:

Tb = Lb / Uo Tr    and   Lp= Uo τo / a.

The measurements have been performed at tw
velocities (6.23 and 8.63 m/s). We observe minimum 
maximum values for Tb as predicted by both models.

Nevertheless, some discrepancies exist betw
experimental measurements and theoretical result
terms of absolute values of Lp and Tb. We attribute the
difference in Lp to the fact that both theories consider
inviscid fluid. Indeed as a first approximation, by ta
ing a growth rate modified by the effect of viscosity, t
optimum wave number kopt

(viscous)  9 is given by:

kopt
(viscous) = 1/[2 (1+3 Oh)]·1/2

where Oh is the Ohnesorge number Oh = η/(ρ 2 a T)1/2

We obtain kopt
(viscous) = 0.62 instead of 0.7 for an in

viscid fluid. The former value is in better agreement w
78—Recent Progress in Ink-Jet Technologies
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experiments where kopt (measured) is equal to 0.62 an
0.58 for respectively Uo = 6.23 and 8.63 m/s.

The discrepancy in the amplitude of Tb can be due
to an underestimation of the electric field, and thus
the initial jet perturbation. Note that the non-linear mo
is not better in its predictions than the linear one as
ready discussed in § III.

Comparison of Volume of Dops
In Figure 3, the dimensionless drop volume (Vd) is

plotted versus (Lp). Up to Lp = 7 (formation of a single
drop), both models are in good agreement with exp
ments. This is probably due to the fact that in this 
gion, the most unstable wave number is kopt. For higher
Lp, other wave numbers may come into play. The v
ume of drops increases up to a splitting into several d
of different volumes. As the calculation is stopped at 
first breakoff, the volume of drops is difficult to evalu
ate with accuracy, since it is necessary to extrapo
the long time behaviour of the strongly deformed par
the jet. Moreover the viscous effet hinders the splitt
process and this is not accounted for by the models

Figure 3. Dimensionless volume of drop Vd versus dimension-
less length of  stimulated jet Lp

In overall, the differences between the models 
not very significant. Indeed, despite the fact that the 
linear models accounts for the formation of satellit
its drop volume predictions are not better than the lin
model ones, since the volume involved in satellites r
resent a few percent of drop volume.

Comparison of Breakoff Shapes
Figure 4 represents the experimental jet shapes

the non linear predictions for different dimensionle
lengths Lp. For the same reason as above the predict
should only be compared with the jet shape photogra
at first breakoff. There is qualitative agreement betw
experiments and theory. The satellite droplet format
as well as the number of drops produced could be
duced from the theoretical jet profile. However, the lo
time behaviour of the detached part of the jet is not e
to predict from first breakoff jet profiles. In particula
at Lp = 12.5, even with the photograph of the jet sha
it is difficult to decide whether or not a doubly bump
section will split into two drops.
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Figure 4. Comparison of experimental jet profiles and non 
ear model predictions

Conclusions

This paper presents original experiments performed
a scaled-up intermittent drop generator. The invest
tion includes different jet velocities and electrical pu
width voltages. Experiments confirm the predictions
two models based on the Lee’s equations. The sim
analytical linear model gives accurate results for brea
length variations and volume of drop. The non lin
model is derived from the expansion into Fourier mo
of the jet dynamics equations, and the corresponding
of coupled non linear differential equations are solv
numerically. In addition to the results obtained with 
linear model, the non linear model predicts more ac
rately jet breakoff shapes.
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